Fabrication of an Amperometric Glucose Biosensor Based on a Prussian Blue/Carbon nanotube/Ionic Liquid Modified Glassy Carbon Electrode

  • Sharareh Sajjadi Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
  • Amir Homayoun Keihan Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Parviz Norouzi Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
  • Mohammad Mahdi Habibi Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
  • Khadijeh Eskandari Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Najmeh Hadizadeh Shirazi Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract

An amperometric glucose biosensor was developed based on synergistic contributions of PB and a bucky gel (BG) consisting of carbon nanotubes (CNTs) and ionic liquid (IL). The PB nanoparticles were first deposited onto the surface of a BG modified glassy carbon (GC) electrode (BG/GC). Then, the Ni2+ ions were electrochemically inserted into the PB lattice to improve its stability in physiological pH. Afterwards, Glucose oxidase (GOx) was immobilized on the BG/GC electrode using a cross-linking method. Amperometric measurements of glucose were performed at −0.05 V vs. Ag/AgCl in 0.05 M phosphate buffer solution at pH 7.4. The glucose biosensor exhibited a sensitivity of 45.03 µA mM−1 cm−2 with a detection limit of     5×10-7 M. The amperometric response was linear in the range of 5×10-7 to 8.3×10−4 M.

References

[1] Huang, J., Dong, Zh., Li, Y., Li, J., Wang, J., Yang, H., Li, Sh., Guo, Sh., Jin, J., Li, R., High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study. Sensors Actuators B Chem., 2013, Vol. 182, pp. 618–624.
[2] Senthamizhan, A., Balusamy, B., Uyar,T., Glucose sensors based on electrospun nanofibers: a review. Anal. Bioanal. Chem., 2016, Vol. 408, pp. 1285–1306.
[3] Wang, J., Glucose Biosensors : 40 Years of Advances and Challenges. Electroanal., 2001, pp. 983–988.
[4] Newman, J., Turner, A. P., Home blood glucose biosensors - a commercial perspective. Biosens. Bioelectron., 2005, Vol. 20, pp. 2435–2453.
[5] Mahbubur Rahman, M., Saleh Ahammad, A. J., Jin, J.H., Ahn, S. J., Lee, J.J., A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, Vol. 10, pp. 4855–4886.
[6] Chen, Ch., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tana, Y., Yao, Sh., Recent advances in electrochemical glucose biosensors. RSC Adv., 2013,Vol. 3, pp. 4473–4491.
[7] Ding, S., Schumacher, M., Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors, 2016,Vol. 16, pp. 589-602.
[8] Chen, H., Xi, F., Gao, X., Chen, Z., Lin, X., Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction. Anal. Biochem., 2010, Vol. 403, pp. 36–42.
[9] Qiu, J. D., Zhou, W. M., Guo, J., Wang, R., Liang, R. P., Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal. Biochem., 2009, Vol. 385, pp. 264–269.
[10] Anuar, N. F., Misran, H., Manap, A., Othman, S. Z., Review on immobilization of nanoparticles for fabrication of glucose biosensor. Appl. Mech. Mater., 2015,Vol., pp. 720–724.
[11] Xue, M. H., Xu, Q., Zhou, M., Zhu, J. J., In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochem. commun., 2006,Vol. 8, pp. 1468–1474.
[12] Ricci, F., Palleschi, G., Sensor and biosensor preparation, optimisation and applications of prussian blue modified electrodes. Biosens. Bioelectron., 2005,Vol. 21, pp. 389–407.
[13] Karyakin, A. A., Gitelmacher, O. V., Karyakina, E. E., A high-sensitive glucose amperometric biosensor based on prussian blue modified electrodes. Anal. Lett., 1994, Vol. 27, pp. 2861–2869.
[14] Chiu, J.-Y., Yu, C.-M., Yen, M.-J., Chen, L.-C., Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/prussian blue bilayer and multi-walled carbon nanotubes. Biosens. Bioelectron., 2009, Vol. 24, pp. 2015–2020.
[15] Zhang, M., Hou, C., Halder, A., Ulstrup, J., Chi, Q., Interlocked graphene-prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens. Bioelectron., 2017, Vol. 89, pp. 570-577.
[16] Lin, L., Huang, X., Wang, L., Tang, A., “Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sci., 2010, Vol. 12, pp. 1764–1769.
[17] Li, Zh., Chen, J., Li, W., Chen, K., Nie, L., Yao, S., Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J. Electroanal. Chem., 2007, Vol. 603, pp. 59–66.
[18] Arvinte, A., Rotariu, L., Bala, C., Gurban, A. M., Synergistic effect of mediator-carbon nanotube composites for dehydrogenases and peroxidases based biosensors. Bioelectrochem., 2009, Vol. 76, pp. 107–114.
[19] Saleh Ahammad, A. J., Lee, J.-J., Rahman, M. A., Electrochemical sensors based on carbon nanotubes. Sensors, 2009, Vol. 9, pp. 2289–2319.
[20] Kumar Vashist, S., Zheng, D., Al-Rubeaan, K., Luong, J. H. T., Sheu, F.-S., Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv., 2011, Vol. 29, pp. 169–188.
[21] Adekunle, A. S., Farah, A. M., Pillay, J., Ozoemena, K. I., Mamba, B. B., Agboola, B. O., Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine. Colloids Surf. B. Biointerfaces, 2012, Vol. 95, pp. 186–194.
[22] Fu, G., Dai, Z., Efficient immobilization of glucose oxidase by in situ photo-cross-linking for glucose biosensing. Talanta, 2012, Vol. 97, pp. 438–444.
[23] Wei, D., Ivaska, A., Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, Vol. 607, pp. 126–135.
[24] Haghighi, B., Nikzad, R., Prussian blue modified carbon ionic liquid electrode: electrochemical characterization and its application for hydrogen peroxide and glucose measurements. Electroanal., 2009, Vol. 21, pp. 1862–1868.
[25] Opallo, M., Lesniewski, A., A review on electrodes modified with ionic liquids. J. Electroanal. Chem., 2011, Vol. 656, pp. 2–16.
[26] Zhang, L., Song, Z., Zhang, Q., Jia, X., Zhang, H., Xin, S., Enhancement of the electrochemical performance of prussian blue modified electrode via ionic liquid treatment. Electroanal., 2009, Vol. 21, pp. 1835–1841.
[27] Li, F., Shan, C., Bu, X., Shen, Y., Yang, G., Niu, L., Fabrication and electrochemical characterization of electrostatic assembly of polyelectrolyte-functionalized ionic liquid and prussian blue ultrathin films. J. Electroanal. Chem., 2008, Vol. 616, pp. 1–6.
[28] Tunckol, M., Durand, J., Serp, P., Carbon nanomaterial-ionic liquid hybrids. Carbon, 2012, Vol. 50, pp. 4303–4334.
[29] Ali, A., Abdulhakim, A. M., Hayyan, M., Juneidi, I., Ali, M., Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim. Acta, 2016, Vol. 193, pp. 321–343.
[30] Keihan, A. H., Sajjadi, S., Improvement of the electrochemical and electrocatalytic behavior of prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochim. Acta, 2013, Vol. 113, pp. 803–809.
[31] Zhang, Y., Guo, G., Zhao, F., Mo, Z., Xiao, F. Zeng, B., A novel glucose biosensor based on glucose oxidase immobilized on AuPt nanoparticle – carbon Nanotube – ionic liquid hybrid coated electrode. Electroanal., 2010, Vol. 22, pp. 223–228.
[32] Du, P., Liu, S., Wu, P., Cai, C., Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta, 2007, Vol. 52, pp. 6534–6547.
[33] Iveković, D., Trbić, H. V., Peter, R., Petravić, M., Čeh, M., Pihlar, B., Enhancement of stability of prussian blue thin films by electrochemical insertion of Ni2+ ions: a stable electrocatalytic sensing of H2O2 in mild alkaline media. Electrochim. Acta, 2012, Vol. 78, pp. 452–458.
Published
2017-12-17
How to Cite
SAJJADI, Sharareh et al. Fabrication of an Amperometric Glucose Biosensor Based on a Prussian Blue/Carbon nanotube/Ionic Liquid Modified Glassy Carbon Electrode. Journal of Applied Biotechnology Reports, [S.l.], v. 4, n. 2, p. 603-608, dec. 2017. ISSN 2423-5784. Available at: <https://journals.bmsu.ac.ir/jabr/index.php/jabr/article/view/177>. Date accessed: 19 apr. 2018.
Section
Original/Research Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.