Fabrication of an Amperometric Glucose Biosensor Based on a Prussian Blue/Carbon nanotube/Ionic Liquid Modified Glassy Carbon Electrode

  • Sharareh Sajjadi Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
  • Amir Homayoun Keihan Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Parviz Norouzi Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
  • Mohammad Mahdi Habibi Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
  • Khadijeh Eskandari Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Najmeh Hadizadeh Shirazi Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran


An amperometric glucose biosensor was developed based on synergistic contributions of PB and a bucky gel (BG) consisting of carbon nanotubes (CNTs) and ionic liquid (IL). The PB nanoparticles were first deposited onto the surface of a BG modified glassy carbon (GC) electrode (BG/GC). Then, the Ni2+ ions were electrochemically inserted into the PB lattice to improve its stability in physiological pH. Afterwards, Glucose oxidase (GOx) was immobilized on the BG/GC electrode using a cross-linking method. Amperometric measurements of glucose were performed at −0.05 V vs. Ag/AgCl in 0.05 M phosphate buffer solution at pH 7.4. The glucose biosensor exhibited a sensitivity of 45.03 µA mM−1 cm−2 with a detection limit of     5×10-7 M. The amperometric response was linear in the range of 5×10-7 to 8.3×10−4 M.


[1] Huang, J., Dong, Zh., Li, Y., Li, J., Wang, J., Yang, H., Li, Sh., Guo, Sh., Jin, J., Li, R., High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study. Sensors Actuators B Chem., 2013, Vol. 182, pp. 618–624.
[2] Senthamizhan, A., Balusamy, B., Uyar,T., Glucose sensors based on electrospun nanofibers: a review. Anal. Bioanal. Chem., 2016, Vol. 408, pp. 1285–1306.
[3] Wang, J., Glucose Biosensors : 40 Years of Advances and Challenges. Electroanal., 2001, pp. 983–988.
[4] Newman, J., Turner, A. P., Home blood glucose biosensors - a commercial perspective. Biosens. Bioelectron., 2005, Vol. 20, pp. 2435–2453.
[5] Mahbubur Rahman, M., Saleh Ahammad, A. J., Jin, J.H., Ahn, S. J., Lee, J.J., A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, Vol. 10, pp. 4855–4886.
[6] Chen, Ch., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tana, Y., Yao, Sh., Recent advances in electrochemical glucose biosensors. RSC Adv., 2013,Vol. 3, pp. 4473–4491.
[7] Ding, S., Schumacher, M., Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors, 2016,Vol. 16, pp. 589-602.
[8] Chen, H., Xi, F., Gao, X., Chen, Z., Lin, X., Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction. Anal. Biochem., 2010, Vol. 403, pp. 36–42.
[9] Qiu, J. D., Zhou, W. M., Guo, J., Wang, R., Liang, R. P., Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal. Biochem., 2009, Vol. 385, pp. 264–269.
[10] Anuar, N. F., Misran, H., Manap, A., Othman, S. Z., Review on immobilization of nanoparticles for fabrication of glucose biosensor. Appl. Mech. Mater., 2015,Vol., pp. 720–724.
[11] Xue, M. H., Xu, Q., Zhou, M., Zhu, J. J., In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochem. commun., 2006,Vol. 8, pp. 1468–1474.
[12] Ricci, F., Palleschi, G., Sensor and biosensor preparation, optimisation and applications of prussian blue modified electrodes. Biosens. Bioelectron., 2005,Vol. 21, pp. 389–407.
[13] Karyakin, A. A., Gitelmacher, O. V., Karyakina, E. E., A high-sensitive glucose amperometric biosensor based on prussian blue modified electrodes. Anal. Lett., 1994, Vol. 27, pp. 2861–2869.
[14] Chiu, J.-Y., Yu, C.-M., Yen, M.-J., Chen, L.-C., Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/prussian blue bilayer and multi-walled carbon nanotubes. Biosens. Bioelectron., 2009, Vol. 24, pp. 2015–2020.
[15] Zhang, M., Hou, C., Halder, A., Ulstrup, J., Chi, Q., Interlocked graphene-prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens. Bioelectron., 2017, Vol. 89, pp. 570-577.
[16] Lin, L., Huang, X., Wang, L., Tang, A., “Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sci., 2010, Vol. 12, pp. 1764–1769.
[17] Li, Zh., Chen, J., Li, W., Chen, K., Nie, L., Yao, S., Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J. Electroanal. Chem., 2007, Vol. 603, pp. 59–66.
[18] Arvinte, A., Rotariu, L., Bala, C., Gurban, A. M., Synergistic effect of mediator-carbon nanotube composites for dehydrogenases and peroxidases based biosensors. Bioelectrochem., 2009, Vol. 76, pp. 107–114.
[19] Saleh Ahammad, A. J., Lee, J.-J., Rahman, M. A., Electrochemical sensors based on carbon nanotubes. Sensors, 2009, Vol. 9, pp. 2289–2319.
[20] Kumar Vashist, S., Zheng, D., Al-Rubeaan, K., Luong, J. H. T., Sheu, F.-S., Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv., 2011, Vol. 29, pp. 169–188.
[21] Adekunle, A. S., Farah, A. M., Pillay, J., Ozoemena, K. I., Mamba, B. B., Agboola, B. O., Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine. Colloids Surf. B. Biointerfaces, 2012, Vol. 95, pp. 186–194.
[22] Fu, G., Dai, Z., Efficient immobilization of glucose oxidase by in situ photo-cross-linking for glucose biosensing. Talanta, 2012, Vol. 97, pp. 438–444.
[23] Wei, D., Ivaska, A., Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, Vol. 607, pp. 126–135.
[24] Haghighi, B., Nikzad, R., Prussian blue modified carbon ionic liquid electrode: electrochemical characterization and its application for hydrogen peroxide and glucose measurements. Electroanal., 2009, Vol. 21, pp. 1862–1868.
[25] Opallo, M., Lesniewski, A., A review on electrodes modified with ionic liquids. J. Electroanal. Chem., 2011, Vol. 656, pp. 2–16.
[26] Zhang, L., Song, Z., Zhang, Q., Jia, X., Zhang, H., Xin, S., Enhancement of the electrochemical performance of prussian blue modified electrode via ionic liquid treatment. Electroanal., 2009, Vol. 21, pp. 1835–1841.
[27] Li, F., Shan, C., Bu, X., Shen, Y., Yang, G., Niu, L., Fabrication and electrochemical characterization of electrostatic assembly of polyelectrolyte-functionalized ionic liquid and prussian blue ultrathin films. J. Electroanal. Chem., 2008, Vol. 616, pp. 1–6.
[28] Tunckol, M., Durand, J., Serp, P., Carbon nanomaterial-ionic liquid hybrids. Carbon, 2012, Vol. 50, pp. 4303–4334.
[29] Ali, A., Abdulhakim, A. M., Hayyan, M., Juneidi, I., Ali, M., Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim. Acta, 2016, Vol. 193, pp. 321–343.
[30] Keihan, A. H., Sajjadi, S., Improvement of the electrochemical and electrocatalytic behavior of prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochim. Acta, 2013, Vol. 113, pp. 803–809.
[31] Zhang, Y., Guo, G., Zhao, F., Mo, Z., Xiao, F. Zeng, B., A novel glucose biosensor based on glucose oxidase immobilized on AuPt nanoparticle – carbon Nanotube – ionic liquid hybrid coated electrode. Electroanal., 2010, Vol. 22, pp. 223–228.
[32] Du, P., Liu, S., Wu, P., Cai, C., Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta, 2007, Vol. 52, pp. 6534–6547.
[33] Iveković, D., Trbić, H. V., Peter, R., Petravić, M., Čeh, M., Pihlar, B., Enhancement of stability of prussian blue thin films by electrochemical insertion of Ni2+ ions: a stable electrocatalytic sensing of H2O2 in mild alkaline media. Electrochim. Acta, 2012, Vol. 78, pp. 452–458.
How to Cite
SAJJADI, Sharareh et al. Fabrication of an Amperometric Glucose Biosensor Based on a Prussian Blue/Carbon nanotube/Ionic Liquid Modified Glassy Carbon Electrode. Journal of Applied Biotechnology Reports, [S.l.], v. 4, n. 2, p. 603-608, dec. 2017. ISSN 2423-5784. Available at: <http://journals.bmsu.ac.ir/jabr/index.php/jabr/article/view/177>. Date accessed: 20 jan. 2018.
Original/Research Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.