Spirulina: A Source of Gamma-linoleic Acid and its Applications

  • Ali Choopani Applied Biotechnology Research Center, Baqiyatallah university of Medical Sciences, Tehran, Iran
  • Mozhgan Poursoltan Department of Biochemistry, Faculty of Biologic Science, Payam-e-Noor University, Tehran, Iran
  • Mohammad Fazilati Department of Biochemistry, Faculty of Biologic Science, Payam-e-Noor University, Tehran, Iran
  • Ali Mohammad Latifi Applied Biotechnology Research Center, Baqiyatal-lah University of Medical Sciences, Tehran, Iran
  • Hossain Salavati Department of Biochemistry, Faculty of Biologic Science, Payam-e-Noor University, Tehran, Iran

Abstract

The human body needs essential nutrients in order to function, grow, and stay healthy. Our bodies cannot make these nutrients, so get them from our diet.
On the other hand, some diet-related diseases can be caused by certain improper food ingredients and body inability of absorbing them. Then the idea of purifying beneficial ingredients formed. Poly-unsaturated fatty acid such as gamma-linoleic acid (GLA) is a group of essential fatty acids particularly favorable for its application in nutraceutical and pharmaceutical industries. GLA plays significant roles in improving human body functions. It has gained its importance in the last four
decades for having a positive effect on the most of the chronic diseases of modern society, in­cluding cancer, diabetes, heart disease, arthritis, Alzheimer's disease, etc. Then, it has been used as a dietary supplement for the treatment of various health problems and have inflammatory component. One of the richest sources of GLA is a kind of microalgae; Spirulina. Spirulina is a blue-green alga primarily originated from two species of cyanobacteria and is believed to be the first form of plant life on the earth. This article reviews GLA applications and properties; favorable conditions for increasing its amount within Spirulina; and how to extract it from the algae.

References

. Zielińska, A., Nowak, I., Fatty acids in vegetable oils and their importance in cosmetic industry. CHEMIK nauka-technika-rynek, 2014, Vol. 1, pp. 103-110.
2. Kapoor, R., Huang, Y.S., Gamma linolenic acid: an anti-inflammatory omega-6 fatty acid. Curr Pharm Biotechnol, 2006, Vol. 7, pp. 531-534.
3. Kucukboyaci, N., Dogru Koca, A., Yildirimli, Ş., Killic, E.İ., Goren, A.C., γ-linolenic acid content and fatty acid profiles of the seed oils of some anchuusa species. Turk J Pharm Sci, 2013, Vol. 10, pp. 87-94.
4. Spurvey, S.A., Production of structured lipids via enzymatic interesterification of gamma-linolenic acid (GLA) and marine oils. Memorial University of Newfoundland, 2002.
5. Karkos, P., Leong, S., Karkos, C., Sivaji, N., Assimakopoulos, D., Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med, 2008, Vol. 2011, pp. 27-32.
6. Kumar, P., Desai, N., Dwivedi, M., Multiple potential roles of Spirulina in human health. CRC Press A, 2007.
7. Sergeant, S., Rahbar, E., Chilton, F.H., Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur J Pharmacol, 2016, Vol. 785, pp. 77-86.
8. Białek, M., Rutkowska, J., The importance of γ-linolenic acid in the prevention and treatment. Postepy higieny i medycyny doswiadczalnej (Online), 2014, Vol. 69, pp. 892-904.
9. Ahmed, S.U., Reddy, K.K., Swathy, S.L., Singh, S.K., Kanjilal, S., Prasad, R.B., et al., Enrichment of γ-linolenic acid in the lipid extracted from Mucor zychae MTCC 5420. Food Res Int, 2009, Vol. 42, pp. 449-453.
10. Raja, R., Hemaiswarya, S., Ganesan, V., Carvalho, I.S., Recent developments in therapeutic applications of Cyanobacteria. Crit Rev Microbiol, 2016, Vol. 42, pp. 394-405.
11. Ötleş, S., Pire, R., Fatty acid composition of Chlorella and Spirulina microalgae species. J AOAC Int, 2001, Vol. 84, pp. 1708-1714.
12. Zurier, R.B., Rossetti, R.G., Jacobson, E.W., Demarco, D.M., Liu, N.Y., Temming, J.E., et al., Gamma‐linolenic acid treatment of rheumatoid arthritis. A randomized, placebo‐controlled trial. Arthritis Rheum, 1996, Vol. 39, pp. 1808-1817.
13. de Jesus Raposo, M.F., de Morais, R.M.S.C., de Morais, A.M.M.B., Health applications of bioactive compounds from marine microalgae. Life Sci, 2013, Vol. 93, pp. 479-486.
14. Mohan, A., Misra, N., Srivastav, D., Umapathy, D., Kumar, S., Spirulina, the nature’s wonder: A review. Lipids, 2014, Vol. 5, pp. 7-10.
15. Kapoor, R., Nair, H., Gamma linolenic acid oils. Bailey's Industrial Oil and Fat Products, 2005.
16. Goffman, F.D., Galletti, S., Gamma-linolenic acid and tocopherol contents in the seed oil of 47 accessions from several Ribes species. J Agric Food Chem, 2001, Vol. 49, pp. 349-354.
17. Cohen, Z., Didi, S., Heimer, Y.M., Overproduction of γ-linolenic and eicosapentaenoic acids by algae. Plant physiol, 1992, Vol. 98, pp. 569-572.
18. Sharathchandra, K., Rajashekhar, M., Total lipid and fatty acid composition in some freshwater cyanobacteria. J Algal Bio-mass Utln, 2011, Vol. 2, pp. 83-97.
19. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., Commercial applications of microalgae. J Biosci Bioeng, 2006, Vol. 101, pp. 87-96.
20. Grima, E.M., Pérez, J.S., Camacho, F.G., Medina, A.R., Giménez, A.G., Alonso, D.L., The production of polyunsaturated fatty acids by microalgae: from strain selection to product purifica-tion. Proce Biochem, 1995, Vol. 30, pp. 711-719.
21. Soltani, N., Latifi, AM., Alnajar, N., Dezfulian, M., Sho-karvi, S., Heydari, M., et al., Biochemical and physiological char-acterization of three Microalgae spp. as candidates for food sup-plement. J Appl Biotechnol Rep, 2016, Vol. 3, pp. 377-381.
22. Moazami, N., Ranjbar, R., Ashori, A., Tangestani, M., Nejad, A.S., Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenerg, 2011, Vol. 35, pp. 1935-1939.
23. Mahajan, G., Kamat, M., γ-Linolenic acid production from Spirulina platensis. Appl Microbiol Biotechnol, 1995, Vol. 43, pp. 466-469.
24. Ronda, S.R., Lele, S., Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis. Braz J Micro-biol, 2008, Vol. 39, pp. 693-697.
25. Monteiro, M.P.C., Luchese, R.H., Absher, T.M., Effect of three different types of culture conditions on Spirulina maxima growth. Braz Arch Biol Technol, 2010, Vol. 53, pp. 369-373.
26. Moreira, S.L., Reactor design for a family production of Spir-ulina spp. and parameters determination for a Spirulina spp. cul-ture. University of Porto, Master thesis, 2013,
27. Sotiroudis, T.G., Sotiroudis, G.T., Health aspects of Spiruli-na (Arthrospira) microalga food supplement. J Serb Chem Soc, 2013, Vol. 78, pp. 395-405.
28. Roughan, P.G., Spirulina: A source of dietary gam-ma‐linolenic acid? J Sci Food Agric, 1989, Vol. 47, pp. 85-93.
29. Kozlenko, R., Henson, R., Latest scientific research on Spir-ulina: Effects on the AIDS virus, cancer and the immune system, 1998, inspiredliving.com
30. Ghaeni, M., Roomiani, L., Review for Application and Medi-cine Effects of Spirulina, Microalgae. J Adv Agric Technol, 2016, Vol. 3, pp. 1-6.
31. Ravi, M., De, S.L., Azharuddin, S., Paul, S.F., The benefi-cial effects of Spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl, 2010, Vol. 2, pp. 73-83.
32. Fazilati, M., Latifi, A.M., Salavati, H., Choopani, A., Anti-oxidant Properties of Spirulina. Journal of Applied Biotechnology Reports, 2016, Vol. 3, pp. 345-351.
33. Desai, K., Sivakami, S., Spirulina: the wonder food of the 21st centry. Asia Pacific Biotech News, 2004, Vol. 8, pp. 1298-1302.
34. Zeweil, H., Abaza, I.M., Zahran, S.M., Ahmed, M.H., AboulEla, H.M., Saad, A.A., Effect of Spirulina platensis as die-tary supplement on some biological traits for chickens under heat stress condition. Asian J Biomed Pharm Sci, 2016, Vol. 6, pp. 8-14.
35. Suliburska, J., Szulińska, M., Tinkov, A., Bogdański, P., Effect of Spirulina maxima supplementation on Calcium, Magne-sium, Iron, and Zinc status in obese patients with treated hyperten-sion. Biol Trace Elem Res, 2016, Vol. 173, pp. 1-6.
36. Deng, R., Chow, T.J., Hypolipidemic, antioxidant, and anti-inflammatory activities of microalgae Spirulina. Cardiovasc Ther, 2010, Vol. 28, pp. e33-e45.
37. Hirahashi, T., Matsumoto, M., Hazeki, K., Saeki, Y., Ui, M., Seya, T., Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxi-city by oral administration of hot water extract of Spirulina platen-sis. Int Immunopharmacol, 2002, Vol. 2, pp. 423-434.
38. Kent, M., Welladsen, H.M., Mangott, A., Li, Y., Nutritional evaluation of Australian microalgae as potential human health sup-plements. PloS one, 2015, Vol. 10, pp. e0118985.
39. Gutiérrez-Salmeán, G., Fabila-Castillo, L., Chamorro-Cevallos, G., Aspectos nutricionales y toxicológicos de Spirulina (arthrospira). Nutricion Hospitalaria, 2015, Vol. 32, pp. 34-40.
40. Konícková, R., Vanková, K., Vaníková, J., Vánová, K., Muchová, L., Subhanová, I., et al., Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol, 2014, Vol. 13, pp. 273-283.
41. Golmakani, M.T., Rezaei, K., Mazidi, S., Razavi, S.H., γ‐Linolenic acid production by Arthrospira platensis using differ-ent carbon sources. Eur J Lipid Sci Technol, 2012, Vol. 114, pp. 306-314.
42. Colla, L.M., Bertolin, T.E., Costa, J.A.V., Fatty acids pro-file of Spirulina platensis grown under different temperatures and nitrogen concentrations. Zeitschrift für Naturforschung C, 2004, Vol. 59, pp. 55-59.
43. Mühling, M., Belay, A., Whitton, B.A., Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol, 2005, Vol. 17, pp. 137-146.
44. Hirano, M., Mori, H., Miura, Y., Matsunaga, N., Nakamu-ra, N., Matsunaga, T., γ-Linolenic acid production by microalgae. Applied biochemistry and biotechnology, 1990, Vol. 24, pp. 183-191.
45. Bhakar, R., Brahmdutt, B., Pabbi, S., Total lipid accumula-tion and fatty acid profiles of microalga Spirulina under different nitrogen and phosphorus concentrations. Egypt J Biol, 2014, Vol. 16, pp. 57-62.
46. van Rijn, J., Shilo, M., Nitrogen limitation in natural popula-tions of cyanobacteria (Spirulina and Oscillatoria spp.) and its effect on macromolecular synthesis. Appl Environ Microbiol, 1986, Vol. 52, pp. 340-344.
47. Ronda, S.R., Bokka, C.S., Ketineni, C., Rijal, B., Allu, P.R., Aeration effect on Spirulina platensis growth and γ-linolenic acid production. Braz J Microbiol, 2012, Vol. 43, pp. 12-20.
48. Sajilata, M., Singhal, R., Kamat, M., Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platen-sis. Food Chem, 2008, Vol. 109, pp. 580-586.
49. Jubie, S., Dhanabal, S., Chaitanya, M., Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatog-raphy and its apoptosis inducing effect. BMC complement Altern Med, 2015, Vol. 15, pp. 263.
50. Jubie, S., Dhanabal, P., Azam, M.A., Muruganantham, N., Kalirajan, R., Elango, K., Synthesis and characterization of some novel fatty acid analogues: A preliminary investigation on their activity against human lung carcinoma cell line. Lipids Health Dis, 2013, Vol. 12, pp. 45.
51. Yao, C.H., Be, J.W., Zer, R.Y., Cheng, C.W., Koo, M., Optimization of a continuous preparation method of Arthrospira platensis γ-linolenic acid by supercritical carbon dioxide technolo-gy using response surface methodology. Sains Malaysiana, 2015, Vol. 44, pp. 1739-1744.
Published
2017-06-03
How to Cite
CHOOPANI, Ali et al. Spirulina: A Source of Gamma-linoleic Acid and its Applications. Journal of Applied Biotechnology Reports, [S.l.], v. 3, n. 4, p. 483-488, june 2017. ISSN 2423-5784. Available at: <http://journals.bmsu.ac.ir/jabr/index.php/jabr/article/view/140>. Date accessed: 11 dec. 2017.
Section
Review Articles

Keywords

Algae, Spirulina, Gamma-linoleic Acid, Fatty Acid Extract

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.